МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Смоленской области Смоленская митрополия Русской Православной церкви (Московский Патриархат)

ЧОУ "Смоленская Православная гимназия"

РАССМОТРЕНА СОГЛАСОВАНА на заседании МО заместитель естественноматематического по учебнопротокол №1 от работе 2025 г.

директора методической «29» августа Благовестова Т.Е.

«29» августа 2025 г.

PACCMOTPEHA на педагогическом совете Протокол №1 от «29» августа Прима № 1-6М 2025 г.

от «01 жевнября

TENNESS CHILD

Дополнительная общеобразовательная общеразвивающая программа

естественно-научной направленности

«Подготовка к итоговой аттестации по физике>>

на 2025/ 2026 учебный год

Возраст обучающихся: 17-18 лет

Срок реализации: 1 год Количество часов: 33

Составитель:

Шалабай Людмила Валентиновна учитель физики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа курса «Подготовка к итоговой аттестации по физике» рассчитана на учащихся 11-х классов общеобразовательных школ. Курс ориентирован на то, чтобы учащиеся получили знания, необходимые им для того, чтобы лучше овладеть общеучебными умениями и навыками, которые позволят школьникам успешно осваивать программу.

Цели курса:

развитие физического мышления, расширение, углубление и систематизация знаний по основным разделам физики; развитие ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности: решения проблем, принятия решений, поиска, анализа и обработки информации.

Задачи курса:

- •систематизация и обобщение теоретических знаний по основным темам курса;
- •формирование умений решать задачи разной степени сложности;
- •усвоение стандартных алгоритмов решения физических задач в типичных ситуациях и в изменённых или новых;
- •развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний.

На занятиях данного курса предпочтительны формы работы, расширяющие классно-урочную систему: практикумы, уроки решения задач.

Форма контроля – итоговое тестирование с использованием КИМ, аналогичных используемым на ЕГЭ.

Содержание программы Механика

Равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности. Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения. Закон сохранения импульса, кинетическая и потенциальные энергии, работа и мощность силы, закон сохранения механической энергии. Условие равновесия твердого тела, закон Паскаля, сила Архимеда, математический и пружинный маятники, механические волны, звук.

Молекулярная физика

Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева — Клапейрона, изопроцессы. Работа в термодинамике, первый закон термодинамики, КПД тепловой машины. Относительная влажность воздуха, количество теплоты.

Электродинамика

Принцип суперпозиции электрических полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца. Закон сохранения электрического заряда, закон Кулона, конденсатор, сила тока, закон Ома для участка цепи, последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца. Поток вектора магнитной индукции, закон электромагнитной индукции Фарадея, индуктивность, энергия магнитного поля катушки с током, колебательный контур.

Квантовая физика и элементы астрофизики

Планетарная модель атома. Нуклонная модель ядра. Ядерные реакции. Фотоны, линейчатые спектры, закон радиоактивного распада. Элементы астрофизики: Солнечная система, звезды, галактики

учебныйпландополнительногообразования

N C	Hannayan manayan	Количество часов		Формы	
№ п /п	Название разделов, тем	Всего	Теория	Практика	контроля

1.	Кинематика.	2	1	1	Фронтальная беседа
2.	Динамика.	3	1	2	Тестовая работа
3.	Статика. Гидростатика.	1	0,5	0,5	Тестовая работа
4.	Гидродинамика.	1	0,5	0,5	Тестовая работа
	Аэродинамика.	1		0,5	тестовая расота
5.	Механика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	3	1	2	Тестовая работа
6.	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона Изопроцессы.	3	1	2	Тестовая работа
7.	Работа в термодинамике, первый закон термодинамики, КПД тепловой машины	1	0,5	0,5	Тестовая работа
8.	Относительная влажность воздуха, количество теплоты	1	-	1	Тестовая работа
9.	Принцип суперпозиции электрических полей	1	-	1	Тестовая работа
10.	магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца (определение направления)	1	0,5	0,5	Тестовая работа
11.	Закон сохранения электрического заряда, закон Кулона, конденсатор,	1	0,5	0,5	Тестовая работа
12.	сила тока, закон Ома для участка цепи последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца	2	1	1	Тестовая работа
13.	Электродинамика и основы СТО (установление соответствия между	1	0,5	0,5	Тестовая работа

	1 1		T	T	<u> </u>
	графиками и физическими				
	величинами, между				
	физическими величинами				
1.4	и формулами)				
14.	Поток вектора магнитной				
	индукции, закон	1	0,5	0,5	Тестовая работа
	электромагнитной		,	,	1
	индукции Фарадея,				
15.	индуктивность, энергия				
	магнитного поля катушки	1	0,5	0,5	Тестовая работа
	с током, колебательный		- ,-	- ,-	1
	контур				
16.	законы отражения и	1		1	T
	преломления света, ход	1	-	1	Тестовая работа
1.5	лучей в линзе				
17.	Электродинамика				
	(объяснение явлений;				
	интерпретация	2	-	2	Тестовая работа
	результатов опытов,				_
	представленных в виде таблицы или графиков)				
10	Изучение планетарной				
18.		1	0,5	0,5	Тестовая работа
	модели атома.		,	,	1
19.	Нуклонная модель ядра.	1	0.5	0.5	Тастарая табата
	Ядерные реакции.	1	0,5	0,5	Тестовая работа
20.	Фотоны, линейчатые				
20.	спектры, закон	1	0,5	0,5	Тестовая работа
	радиоактивного распада	1	0,5	0,5	тестовая расота
21.	Атомная физика				
21.	Tromas prome	1	0,5	0,5	Тестовая работа
			,	ŕ	1
22.	Ядерная физика.	_			
		1	0,5	0,5	Тестовая работа
22	Mama wy yyaywa a a				
23.	Методы научного	1	0.5	0.5	Tagmanages
	познания и физическая	1	0,5	0,5	Тестовая работа
24	картина мира.				
24.	Итоговое занятие	1	_	1	Тестовая работа
		1	_	1	тестовал расота
25.	Повторение курса физики				
	11 класса	1	-	1	Тестовая работа
1					1

Рабочая Программа

Nn/n	Форма занятия	Кол-во часов	Тема занятия	Место провед ения	Форма организации учебной деятельности
1.	Лекция,практика	1	Вводное занятие Цели, задачи курса. Техника безопасности на занятиях. Кинематика	Гимназия	Фронтальная форма, практическое занятие
2.	Урок – практикум решения задач	1	Кинематика	Гимназия	практическое занятие
3.	Урок – практикум решения задач	1	Динамика	Гимназия	практическое занятие
4.	Урок – практикум решения задач	1	Динамика	Гимназия	групповая форма практическое занятие
5.	Урок – практикум решения задач	1	Динамика	Гимназия	Парная форма практическое занятие
6.	Урок — практикум решения задач	1	Статика. Гидростатика.	Гимназия	практическое занятие
7.	Урок – практикум решения задач	1	Гидродинамика. Аэродинамика	Гимназия	практическое занятие
8.	Урок – практикум решения задач	1	Механика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	Гимназия	практическое занятие
9.	Урок – практикум решения задач	1	Механика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	Гимназия	групповая форма практическое занятие
10.	Урок – практикум решения задач	1	Механика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	Гимназия	Парная форма практическое занятие

11.	Лекция,практика		Связь между давлением и средней кинетической		практическое
		1	энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона. Изопроцессы.	Гимназия	занятие
12.	Урок – практикум решения задач	1	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона. Изопроцессы.	Гимназия	групповая форма практическое занятие
13.	Урок – практикум решения задач	1	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона. Изопроцессы.	Гимназия	Парная форма практическое занятие
14.	Лекция,практика	1	Работа в термодинамике, первый закон термодинамики, КПД тепловой машины	Гимназия	практическое занятие
15.	Урок – практикум решения задач	1	Относительная влажность воздуха, количество теплоты	Гимназия	практическое занятие
16.	Урок – практикум решения задач	1	Принцип суперпозиции электрических полей	Гимназия	Парная форма практическое занятие
17.	Урок – практикум решения задач	1	магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца (определение направления)	Гимназия	практическое занятие
18.	Лекция,практика	1	Закон сохранения электрического заряда, закон Кулона, конденсатор,	Гимназия	Парная форма практическое занятие
19.	Лекция,практика	1	сила тока, закон Ома для участка цепи последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца	Гимназия	практическое занятие
20.	Урок – практикум решения задач	1	сила тока, закон Ома для участка цепи последовательное и параллельное соединение проводников, работа и мощность тока, закон Джоуля — Ленца	Гимназия	Парная форма практическое занятие

21	V		Электродинамика и основы		практическое
21.	Урок –		СТО (установление		занятие
	практикум	1	соответствия между		
	решения задач		графиками и физическими	Гимназия	
			величинами, между		
			физическими величинами и		
			формулами)		
22.	Урок –		Поток вектора магнитной		групповая форма
	практикум	1	индукции, закон	Гимназия	практическое
	решения задач	1	электромагнитной индукции	Тимпазия	занятие
	решения задач		Фарадея,		Sanathe
23.	Урок –		индуктивность, энергия		практическое
	практикум	1	магнитного поля катушки с	Гимназия	занятие
	решения задач		током, колебательный контур		
			законы отражения и		групповая форма
24.	Урок –	1	преломления света, ход лучей	-	1 1
	практикум	1	в линзе	Гимназия	практическое
	решения задач				занятие
25.	Урок –		Электродинамика (объяснение		практическое
	практикум		явлений; интерпретация		занятие
	решения задач	1	результатов опытов,	Гимназия	
	решения зада т		представленных в виде		
			таблицы или графиков)		
26.	Урок –		Электродинамика (объяснение		практическое
	практикум		явлений; интерпретация		занятие
	решения задач	1	результатов опытов,	Гимназия	
	решения зада т		представленных в виде		
			таблицы или графиков)		
27.	Лекция,практика	1	Изучение планетарной модели	Гимназия	практическое
			атома.		занятие
28.	Лекция,практика	1	Нуклонная модель ядра.	Гимназия	практическое
		*	Ядерные реакции.		занятие
29.	Лекция,практика	1	Фотоны, линейчатые спектры,	Гимназия	практическое
		1	закон радиоактивного распада	Тимназия	занятие
30.	Лекция,практика		Атомная физика		практическое
		1		Гимназия	занятие
	Лекция,практика		Ядерная физика.		практическое
31.	ліскция,практика	1	лідерная физика.	_	*
		1		Гимназия	занятие
32.	Лекция,практика	1	Методы научного познания и	Гимназия	практическое
	' ' 1		физическая картина мира.	. MINITIOSMA	занятие
33.	Контрольная		Итоговое занятие		Метод
	работа	1		Гимназия	письменного
	r				контроля
24	***		Повторение курса физики 11		практическое
34.	Урок –	1	класса	Ги ла 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	занятие
	практикум	1	Auture a	Гимназия	Juliatho
	решения задач				

РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма; ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера

экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых физических явлениях;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически

оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей; выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

навыками получения информации физического содержания из самостоятельно осуществлять источников разных типов, поиск, анализ, информации различных систематизацию И интерпретацию видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во вне-урочной деятельности; распознавать предпосылки конфликтных ситуаций и смягчать конфликты; развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы; выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности; принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с

другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Предметными результатами обучения физике являются:

- формирование целостной научной картины мира, представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о системообразующей роли физики для развития других естественных наук, техники и технологий; научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- формирование представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, молекулярно-кинетической теории, термодинамики, электродинамики, оптики, элементов теории относительности, квантовой физики и астрономии; овладение понятийным аппаратом и символическим языком физики;
- понимание возрастающей роли естественных наук и научных исследований в современном мире, постоянного процесса эволюции научного знания, значимости международного научного сотрудничества;
- приобретение опыта применения научных методов познания, наблюдения физических явлений, проведения опытов, простых экспериментальных исследований, прямых и косвенных измерений с использованием аналоговых и цифровых измерительных приборов; понимание неизбежности погрешностей любых измерений;
- овладение научным подходом к решению различных задач, умениями формулировать гипотезы, конструировать, проводить эксперименты, оценивать полученные результаты, умением сопоставлять экспериментальные и теоретические знания с объективными реалиями жизни;
- формирование умений безопасного и эффективного использования лабораторного оборудования, проведения точных измерений и адекватной оценки полученных результатов, представления научно обоснованных аргументов своих действий, основанных на межпредметном анализе учебных

задач;

• понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи, бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду и организм человека; осознание возможных причин техногенных катастроф;

В результате изучения курса выпускник научится:

- •понимать смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, Солнечная система, галактика, Вселенная;
- понимать смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- •понимать смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твёрдых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория даёт возможность объяснять известные явления природы и научные факты, предсказывать ещё неизвестные явления;
- приводить примеры практического использования физических знаний: законов

механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

• использовать приобретённые знания и умения в практической деятельности и повседневной жизни для: о обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи; о оценки влияния на организм человека и другие организмы загрязнения окружающей среды; о рационального природопользования и защиты окружающей среды.

Выпускник получит возможность научиться:

- понимать и объяснять целостность физической теории, определять границы её применимости и место в ряду других физических теорий;
- владеть приёмами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством (энергетические, сырьевые, экологические), и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчётные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;

• объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ урока	Наименование разделов и тем	Кол-во часов	Дата
1	Кинематика.	1	
2	Кинематика.	1	
3	Динамика.		
4			
5		3	
	Статика. Гидростатика.		
6		1	
7	Гидродинамика. Аэродинамика.	1	
8	Механика (установление соответствия между графиками и		
9	физическими величинами, между физическими величинами и	3	
10	формулами)		
11	Связь между давлением и средней кинетической энергией,		
	абсолютная температура, связь температуры со средней		
	кинетической энергией,	3	
12	уравнение Менделеева – Клапейрона		
13	Изопроцессы.		
14	Работа в термодинамике, первый закон термодинамики, КПД		
	тепловой машины	2	
15	Относительная влажность воздуха, количество теплоты		
16	Принцип суперпозиции электрических полей		
17	магнитное поле проводника с током, сила Ампера, сила	2	
	Лоренца, правило Ленца (определение направления)		
18	Закон сохранения электрического заряда, закон Кулона,		
	конденсатор,		
19	сила тока, закон Ома для участка цепи	3	
20	последовательное и параллельное соединение проводников,		
21	работа и мощность тока, закон Джоуля – Ленца		
21	Электродинамика и основы СТО (установление соответствия между графиками и физическими величинами, между	1	
	физическими величинами и формулами)	1	
22	Поток вектора магнитной индукции, закон электромагнитной		
	индукции Фарадея,		
23	индуктивность, энергия магнитного поля катушки с током,	2	
25	колебательный контур,	3	
24	законы отражения и преломления света, ход лучей в линзе		

25	Электродинамика (объяснение явлений; интерпретация		
26	результатов опытов, представленных в виде таблицы или	2	
	графиков)		
27	Изучение планетарной модели атома.		
28	Нуклонная модель ядра. Ядерные реакции.	3	
29	Фотоны, линейчатые спектры, закон радиоактивного		
30	Атомная физика. Ядерная физика.	2	
31	Методы научного познания и физическая картина мира.	2	
32	Итоговое занятие	1	
33	Повторение курса физики 11 класса	1	